GEVES Expertise & Performance Contact:

SeqNetectVeg: a major project to develop NGS tools for multi-target detection of bacterial and fungal pathogens transmitted by vegetable seeds

Mylène Ruh¹, Nicolas Denancé¹, Isabelle Sérandat¹, Amandine Lê Van¹, Jaiana Malabarba¹, Matthieu Barret², Marie Simonin², Martial Briand², Muriel Marchi², Pascal Poupard², Sandrine Balzergue², Muriel Bahut², Gabin Frémont³, Juliette Delisle⁴, Thomas Baldwin⁵ and <u>René Mathis¹</u> ¹ GEVES, 25 rue Georges Morel, 49071 Beaucouzé, France.² Université d'Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France.³ Vilmorin-Mikado, route du Manoir, 49250 La Ménitré, France.⁴ HM.Clause, 83 rue Louis Saillant, 26802 Portes-lès-Valence, France.⁵ Sakata Vegetables Europe, 95 route de Pouillé, 49130 Les Ponts-de-Cé, France

Background and context

mylene.ruh@geves.fr

Seeds enable genetic resources to be disseminated as part of programmes to select, multiply and market varieties throughout the world. At the same time, seeds are also carriers of a diversity of microorganisms (collectively referred to as the microbiota), which can be beneficial or detrimental to plant health. The availability of accurate and high-throughput methods for identifying seed lots of high sanitary quality is therefore essential for the seed industry.

SeqDetectleg is a French collaborative project (2023-2027) which aims to develop and validate methods for detecting multiple bacterial and fungal pathogens in vegetable seed lots, which will be proposed for addition as a pre-selection step to recognised health analysis methods (e.g. ISTA).

Detection process by metabarcoding

SeqNetectVeg project

Non-exhaustive list of vegetable crops and bacterial and fungal pathogens targeted by the project:

Targets	Bacteria	Fungi
Bean	 Pseudomonas savastanoi pv. phaseolicola P. syringae pv. syringae Xanthomonas spp. 	 Boeremia spp. Colletotrichum lindemuthianum Fusarium oxysporum f. sp. phaseoli Macrophomina phaseolina Pseudocercospora griseola Stagonosporopsis hortensis
Cabbage	 P. syringae pv. maculicola Xanthomonas spp. 	 Alternaria brassicae and brassicicola Plenodomus lingam
Carrot	 Candidatus Liberibacter solanacearum (CLso) X. hortorum pv. carotae 	 A. dauci and radicina Cercospora carotae
Lamb's lettuce	- Acidovorax valerianellae	Peronospora valerianellaePhoma valerianellae
Melon	- A. citrulli	- Didymella bryoniae
Soybean	- P. savastanoi pv. glycinae	- Phomopsis complex (Diaporthe)
Tomato	 Clavibacter michiganensis (Cmm) P. corrugata and P. syringae pv. tomato (Pst) Xanthomonas spp. 	 A. solani D. lycopersici F. oxysporum

First results: Advances for bacterial targets

In silico analysis of the *gyrB* marker:

- Collection of 1000 gyrB sequences representing the diversity of all the targeted bacterial species and related species (*Acidovorax*, *CLso*, *Clavibacter*, *Pseudomonas* and *Xanthomonas*).
- **KI-S tool** (Briand *et al.*, 2021. A rapid and simple method for assessing and representing genome sequence relatedness) for the calculation of the percentage of shared 15-mers between all gyrB sequences.

Key stages in the project to develop and validate methods for detecting pathogens by metabarcoding:

Example of the identification by *in silico* analysis of the target bacterial species in tomato: *Clavibacter* michiganensis (Cm), P. corrugata, P. viridiflava, P. syringae pv. tomato (Pst), X. euvesicatoria pv. euvesicatoria (Xee), X. euvesicatoria pv. perforans (Xep), X. hortorum pv. gardneri (Xhg) and X. vesicatoria.

- 19 Xhg seq. share 100% id. with 10 seq. from various X. *hortorum* pathovars
- 1 *Xhg* seq. shares 100% id. with 1 *X. hortorum* seq. + 1 other *Xhg* seq. shown <u>elsewhere in the figure</u> shares 100% id. with 8 seq. from various *X. hortorum* pathovars
- \rightarrow Either it is not possible to distinguish at pathovar level for X. hortorum
- \rightarrow Or some X. hortorum gyrB seq. (Xhg included) are not correctly assigned
- All *Xee* (10) and *Xep* (28) seq. share at least 50% id. with each other and with all the other *X. euvesicatoria* (27) and some *Xanthomonas* spp. (18) seq.
- All *Xee* seq. (10) share 100% id. with 10 *Xep* and 12 *X*. *euvesicatoria* seq.
- 17 *Xep* seq. share 100% id. with 6 *X. euvesicatoria* and 8 Xanthomonas spp. seq.
- 1 *Xep* seq. shares 100% id. with 9 *X. euvesicatoria* and 9 Xanthomonas spp. seq.
- \rightarrow Either it is not possible to distinguish at pathovar level for X. euvesicatoria
- \rightarrow Or some X. euvesicatoria gyrB seq. (Xee and Xep included) are not

nstitut de Recherche en

Horticulture et Semences

angers

FS

20 Cm seq. share at least 50% id. with 20 seq. from Clavibacter spp. including: 1 Cm seq. which shares at least 90% id. with 1 Clavibacter spp. seq.

Cm seq. which shares 100% id. with 2 *Clavibacter* spp. seq.

HM CLAUSE

All other Cm seq. (12) shown elsewhere in the figure share less than 50% id. with all other *gyrB* seq.

 \rightarrow Highly likely that the 2 *Cm* and/or the 3 *Clavibacter* spp. *gyrB* seq. sharing at least 90% identity are misassigned

> 7 X. vesicatoria seq. are identical 1 X. vesicatoria seq. shares at least 50% id. with only the 7 others seq.

SeqNetectVeg

Created with BioRender co

 \rightarrow Definite identification for X *vesicatoria* species

> **Thresholds** (identity percentage) ●<50% ●≥50% ●≥90% ●=100%

Species (number of *gyrB* sequences) Acidovorax spp. (16)

CLso (8) gyrB sequences *Cm* (32) of targeted Clavibacter spp. (25) bacterial species P. corrugata (9) for tomato Pst (14)

P. syringae (2) P. syringae pv. other (50) • *P. savastanoi* pv. other (19) • P. viridiflava (8) *Xee* (10) Xep (28) • X. euvesicatoria pv. vesicatoria (1) • *X. euvesicatoria* (15) • X. euvesicatoria pv. other (11) Xhg (21) • X. hortorum (8) • *X. hortorum* pv. other (39)

ANAN

nalyses acides nucléiques

