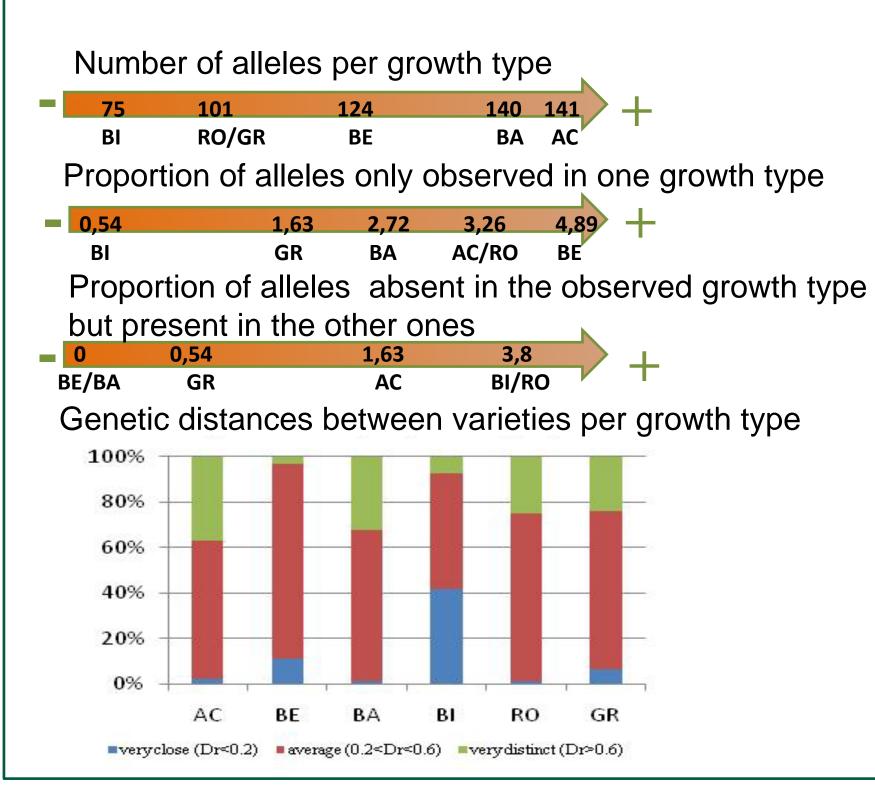


Evaluation of the Diversity in cultivated Lettuce (Lactuca sativa L.), Contribution of Wild Accessions and Old Varieties

Stéphanie CHRISTIEN¹, Magali LARENAUDIE², Sophie ALIGON³, François BOULINEAU¹, Pascal COQUIN¹, Anne BERNOLE², René MATHIS³, Valérie GRIMAULT³, Joël GUIARD³, Aurélia LUCIANI³


Corresponding author : stephanie.christien@geves.fr

Introduction **Materials and methods** The aim of this study **500** varieties listed in the EU Catalog is to evaluate the diversity present in Molecular **30 SSR** GENOTYPING data Lactuca sativa L. AC : Loosleaf **BE : Butterhead BA : Summer crisp** species and to issued from measure its evolution 6 growth types : **char**acteristics AC, BE, BA, BI, RO, GR during the last 60 **Morphologica** CARACTERISATION

Results

Allelic diversity per growth type

Since the middle of 80's the allelic diversities has increased but is uneven according to the observed growth type and the periods chosen.

The introduction of new alleles is not uniform overtime.


Allelic diversity existing at the moment M

		[<1970	1970-1985	1985-2000	>2000			
Number of varieties			28	48	244	497			
Number of alleles put in evidence in the period			116	129	166	184			
Allelic richness			3.90	4.30	5.53	б.13			
% of varieties couple with Dr*<0.2			0.26	2.04	3.19	1.93			
% of varieties couple with Dr*>0.6			39.68	39.72	41.10	40.38			
*Dr = Rogers distance									
Nei Diversit	y Index								
0,52	0,51	0.53		0,55					
<1970	1970-1985	1985-20	00	>2000					
Allalia diversity introduced new period									

<u>Allelic diversity introduced per period</u>

	<1970	1970-1985	1985-2000	>2000		
Number of new varieties	28	20	199	253		
Number of alleles put in evidence in the period	117	94	152	155		
Allelic richness	3.90	3.13	5.07	5.17		
% of varieties couple with Dr*<0.2	0.20	8.95	3.61	1.82		
% of varieties couple with Dr*>0.6	39.68	38.95	40.81	36.73		
*Dr = Rogers distance						

PCA & Trees of representation of the 500 lettuce varieties

The genetic structure of the *Lactuca sativa* species is principally based on morphotype linked to the growth types.

Nevertheless, some varieties issued from one growth type and lost among varieties of another growth type, are the result of more original selection schemes.

New allele introduction is principally linked to the introgression of diseases resistances often realized by interspecific crossing: *Bremia lactucae* races, in constant emergence, still force breeders to find new sources from resistances in old varieties or wild species (*e.g. L. serriola* or *L. saligna...*) ; resistance to aphids (*Nasonovia ribisnigri*) is introgressed from *L. virosa* with *L. serriola* as bridge-species.

During last 25 years, progress has been made with introduction of novel traits including disease and insect resistances, novel leaf colors and shapes, open head, slow bolting or broad environmental adaptation.

Conclusion

Nearly all enhancements have targeted traits from agriced the primary gene pool especially for morphological stable traits in old varieties or populations. The secondary resourd and tertiary pools have been recently used for Cross diseases resistances traits. breed In a context of sustainable intensification of global morp

from agriculture, the creation of varieties having more gical stable resistances seems to go through the genetics dary resources.

Crossing with landraces are a current trend by breeders which will allow to obtain some new morphotypes and perhaps by the way a new typology.

Eucarpia, Genetic Ressources section meeting, 2013 June 10-13 Alnarp, Swec

¹ GEVES, Domaine de La Boisselière, 49250 BRION, FRANCE
² GEVES, Domaine du Magneraud, 17700 SURGERES, FRANCE
³ GEVES, 25 rue Georges Morel, CS 90 024, 49071 BEAUCOUZE CEDEX, FRANCE

