

Impact of light on poplar rust infection

B. FABRE, F. HALKETT and P. FREY Unity Interactions Trees-Microorganims Lab of Ecology of forestry pathogens

FABRE Bénédicte

Introduction What is poplar rust ?

Poplar rusts were caused by Melampsora spp.

Symptoms:

- Disturbance of photosynthesis
- Loss of growth
 - \rightarrow Loss of productivity
- Pertubation of autumn translocation
- Sensitivity to secondary parasites
 → Mortality of young trees

Species :

- Melampsora medusae (quarantine pest)
- Melampsora allii-populina
- Melampsora larici-populina (Mlp)

Poplar planting

Poplar with rust

Poplar leaf with rust

Introduction Biology of *Melampsora larici-populina*

Specificities:

- Heteroecious and macrocyclic

 \rightarrow We study mainly the asexual reproduction on poplar: the uredinia producing the urediniospores

- Strict biotrophic fungus (living host is mandatory)
 - \rightarrow All experiments are performed on excised leaves or excised foliar discs

Urediniospores of *MIp*

Rinaldi et al, 2007

Introduction Agressiveness traits

Matthias Hahn, 2000

Quantity of mycelium in planta

2- Growth of mycelium

Introduction

Inoculation of excised leaf discs to measure quantitative traits

Introduction Phenotyping automated system

Main purposes:

- Study many samples at the same time in order to increase statistical power
- Overcome the effects of experimenter's observations

Introduction

Descriptions :

- Each waterproof box contains 2 fluorescent tubes
- Mean fluence # 40 µmol/s/m²
- Constant light regime

Main disadvantages:

- Production of heat
- Heterogeneity of the emitted light : variations in light intensity and light spectrum
- No possibility to change easily the light intensity depending on the needs

\rightarrow Need to test other light sources in regards of quantitative traits

Spectrum of the fluorescent tubes

1. Effects of different light spectra

Materials and methods

Tested light sources:

- Fluorescent tubes (the reference)
- 8 monochromatic LED spots:
 - 1. Purple (385 nm)
 - 2. Purple (405 nm)
 - 3. Blue (440 nm)
 - 4. Green (520 nm)
 - 5. Yellow (600 nm)
 - 6. Red (630 nm)
 - 7. Red (660 nm)
 - 8. Red + Blue (440 nm and 660 nm)

Rust strains: 3 isolates of Mlp

Inoculation type: Spraying of spores on agar plates

Measured quantitative trait: Germination rate

Vegeled[™] lighting spots

HEPH-Condorcet, Belgium

1. Effects of different light spectra

Results of measured spore germination

Number of samples: 100 observed spores

Statistical analyses:

Germination rate \rightarrow generalized linear model with binomial-raw distribution Differences were tested with Tukey posthoc comparaisons.

Light sources	Isolate Mlp 1	Isolat Mlp 2	Isolate Mlp 3
Fluorescent tubes	<mark>96</mark> %	84 %	100%
Purple 385 nm	16 % *	0 % *	18 % *
Purple 405 nm	96 %	44 % *	67 % *
Blue 440 nm	99 %	98 %	100 %
Green 520 nm	99 %	100 %	100 %
Yellow 600 nm	97 %	NA	99 %
Red 630 nm	97 %	96 %	100 %
Red 660 nm	98 %	96 %	100 %
Blue 440 nm + Red 660 nm	98 %	98 %	100 %

Conclusion: Only UV radiations inhibit the spore germination.

2. Effects of different light sources

Materials and methods

Tested light sources:

- Fluorescent tubes (the reference)
- White LED profiles
- White and Red LED profiles
- Mean fluence # 40 µmol/s/m²

A light map was performed for each light sources and before each test.

Rust strain: 1 isolate of Mlp

Inoculation type: monospore inoculations on excised foliar discs

Measured quantitative traits:

- Germination rate
- Infection efficiency
- Latency, defined as the time elapsed between the inoculation day and the date of lesion appearance

2. Effects of different light sources Results

Number of samples: 96 inoculated droplets per light modality

Statistical analyses:

- Germination rate and infection efficiency → generalized linear model with binomial-raw distribution
- Latency \rightarrow generalized linear model with gamma-raw distribution Differents were tested with Tukey post-boc comparaisons

Jinerenis	were tested	i with Tukey	post-noc c	omparaisons).

Light sources	Mean Fluence Rate of spore Infection germination efficiency		Infection efficiency	Latency
Fluorescent tubes	40 µmol/s/m2	100%	0.21	8.0 days
White LED profiles	40 µmol/s/m2	100%	0.29	7.6 days *
White + Red LED profiles	45 μmol/s/m2	100%	0.24	7.8 days *

Conclusion: The mesured quantitative traits were similar to the reference.

3. Effect of different fluences

Materials and methods

Tested fluences:

- 30 µmol/s/m²
- 90 µmol/s/m²

A light map was performed for each fluence.

Rust strain: 2 isolates of Mlp

Inoculation type: Monospore inoculation on excised foliar discs

Measured quantitative traits:

- Germination rate
- Infection efficiency
- Latency, defined as the time elapsed between the inoculation day and the date of the lesion detection by the automaton

645.00 28330.0000

3. Effect of different fluences Results

Number of samples: 1 536 inoculated droplets per light modality and isolate

Statistical analyses:

- Germination rate and infection efficiency → generalized linear model with binomial-raw distribution
- Latency \rightarrow generalized linear model with gamma-raw distribution Differents were tested with Tukey post-hoc comparaisons.

Strains	Light sources	Mean Fluence	Rate of spore germination	Infection efficiency	Latency
Isolate Mlp 1	White LED profiles	30 μmol/s/m²	100%	0.46	8.8 days
Isolate Mlp 1	White LED profiles	90 µmol/s/m²	98%	0.41 *	8.7 days
Isolate Mlp 2	White LED profiles	30 µmol/s/m ²	97%	0.44	8.5 days
Isolate Mlp 2	White LED profiles	90 µmol/s/m²	91%	0.35 *	8.4 days

Conclusion : As the fluence increases, the infection efficience decreases.

3. Quid of poplar reponses ?

Materials and methods

.015

14/05/2019

Tested fluences:

- 30 µmol/s/m2
- 90 µmol/s/m2

A light map was performed for each fluence.

Rust strains: 1 isolate of Mlp

Inoculation types:

On excised foliar discs, 3 inoculum densities are performed:

5

- only one spore
- 20 spores
- 120 spores

Measurements:

- Sampling at 7 days post-inoculation
- 12 infected foliar discs per modality
- Extraction and quantification of phenolic compounds (Ultra-High Performance Liquid Chromatography)

3. Quid of poplar reponses ?

Correlations circle of the phenolic compounds

 \rightarrow effect of light fluence and inoculum density

FABRE Bénédicte / Impact of light on poplar rust infection

UMR 1136 – Interactions Arbres-Microorganismes

Fabien Halkett Pascal Frey Jérémy Pétrowski Christophe Bailly Delphine Vrydagh (2013-2014) Pierre Santerre Filleux d'Arrentières (2018) Manon Paineau (2018)

Samuel Colasse Professor at HEPH-Condorcet

UR 1138 – Biogéochimie des Ecosystèmes Forestiers Jérôme Demaison

UMR 1121 – Laboratoire Agronomie et Environnement Romain Larbat

Manuel Colasse

